

Homological algebra solutions Week 10

Throughout, we will abbreviate *Cartan-Eilenberg resolution* as *CE-resolution*.

1. (a) Consider the commutative diagram with exact column

$$\begin{array}{ccccccc}
 & & & & 0 & & \\
 & & & & \downarrow & & \\
 \cdots & \longrightarrow & B_p(P, d^h)_1 & \longrightarrow & B_p(P, d^h)_0 & \longrightarrow & \text{Im}(d_{n+1}^A) = B_p(A) \\
 & & \downarrow & & \downarrow & & \\
 & & & & \ker(d_p^A) = Z_p(A) & & \\
 & & \downarrow & & \downarrow & & \\
 \cdots & \longrightarrow & H_p(P, d^h)_1 & \longrightarrow & H_p(P, d^h)_0 & \longrightarrow & Z_p(A)/B_p(A) = H_p(A) \\
 & & \downarrow & & \downarrow & & \\
 & & & & 0 & &
 \end{array}$$

where the rows are projective resolutions of $B_p(A)$ and $H_p(A)$. By the Horseshoe Lemma (Exercise 5.4), we can assemble a projective resolution of $Z_p(A)$

$$B_p(P, d^h)_\bullet \oplus H_p(P, d^h)_\bullet \rightarrow Z_p(A)$$

where the right hand column lifts to an exact sequence of chain complexes

$$0 \longrightarrow B_p(P, d^h)_\bullet \longrightarrow B_p(P, d^h)_\bullet \oplus H_p(P, d^h)_\bullet \longrightarrow H_p(P, d^h)_\bullet \longrightarrow 0 .$$

On the other hand, for every n , the SES in \mathcal{A}

$$0 \longrightarrow B_p(P, d^h)_n \longrightarrow Z_p(P, d^h)_n \longrightarrow H_p(P, d^h)_n \longrightarrow 0$$

is split, because $H_p(P, d^h)_n$ is projective. Therefore, $Z_p(P, d^h)_n \cong B_p(P, d^h)_n \oplus H_p(P, d^h)_n$. We conclude that

$$Z_p(P, d^h)_\bullet \rightarrow Z_p(A)$$

is a projective resolution.

Similarly, since $Z_p(P, d^h)_\bullet \rightarrow Z_p(A)$ is a projective resolution for every p , we apply the horseshoe lemma to the commutative diagram with exact columns

$$\begin{array}{ccccccc}
& & & & & & 0 \\
& & & & & & \downarrow \\
\cdots & \longrightarrow & Z_p(P, d^h)_1 & \longrightarrow & Z_p(P, d^h)_0 & \longrightarrow & \ker(d_p^A) = Z_p(A) \\
& & & & & & \downarrow i \\
& & & & & & A_p \\
& & & & & & \downarrow d_p^A \\
\cdots & \longrightarrow & B_{p-1}(P, d^h)_1 & \longrightarrow & B_{p-1}(P, d^h)_0 & \longrightarrow & \text{Im}(d_p) = B_{p-1}(A) \\
& & & & & & \downarrow \\
& & & & & & 0
\end{array}$$

A similar reasoning allows us to conclude.

(b) Provided that \mathcal{A} is a small abelian category, we may assume by *Freyd-Mitchell's embedding theorem* that \mathcal{A} is the category of R -modules for some ring R . We apply a similar reasoning as in the proof of theorem 2.7.2.

Consider $A_\bullet = A_{\bullet,0}$ viewed as double complex concentrated in degree 0. We start with the CE-resolution $P_{\bullet,\bullet} \rightarrow A_\bullet$ and consider the augmented double complex C' by adding the shifted double complex $A[-1]_\bullet$ in the row $q = -1$.

$$\begin{array}{ccccccc}
\vdots & & \vdots & & \vdots & & \vdots \\
\downarrow & & d^h \downarrow & & \downarrow & & \downarrow \\
P_{0,0} & \longleftarrow & \cdots & \longleftarrow & P_{p-1,0} & \xleftarrow{d^r} & P_{p,0} \longleftarrow P_{p+1,0} \longleftarrow \cdots \\
\epsilon_0 \downarrow & & \epsilon_{p+1} \downarrow & & \downarrow \epsilon_p & & \downarrow \epsilon_{p-1} \\
A_0 & \longleftarrow & \cdots & \longleftarrow & A_{p-1} & \longleftarrow & A_p \longleftarrow A_{p+1} \longleftarrow \cdots
\end{array}$$

We notice that $\epsilon : \text{Tot}^\oplus(P_{\bullet,\bullet}) \rightarrow A$ has mapping cone

$$\text{Cone}(\epsilon) = \text{Tot}(C').$$

Using corollary 1.5.4, ϵ is a quasi-isomorphism if and only if $\text{Cone}(\epsilon)$ is exact. But by the *Acyclic assembly lemma* (Lemma 2.7.3), since

C' is a right half plane complex with exact columns (since there are projective resolutions by part (a)) we conclude.

2. We construct the induced map $\tilde{f} : P_{\bullet, \bullet} \rightarrow Q_{\bullet, \bullet}$ as follows. We begin by constructing chain maps $\tilde{f} : P_{p, \bullet} \rightarrow Q_{p, \bullet}$ between the p -th columns of $P_{\bullet, \bullet}$ and $Q_{\bullet, \bullet}$ then verify that they assemble to a double chain complex map \tilde{f} . Consider the following commutative diagram

$$\begin{array}{ccccccc} 0 & \longrightarrow & Z_p(A) & \xrightarrow{i} & A_p & \xrightarrow{d_p} & B_{p-1}(A) & \longrightarrow 0 \\ & & h \downarrow & & f_p \downarrow & & \downarrow g & \\ 0 & \longrightarrow & Z_p(B) & \xrightarrow{i'} & B_p & \xrightarrow{d_p} & B_{p-1}(B) & \longrightarrow 0 \end{array}$$

where $g = f_p|_{Z_p(A)}$ and $h = f_{p-1}|_{B_{p-1}(A)}$. By the *Comparison theorem* (Theorem 2.2.6), the maps h and g can be lifted to chain complex maps (red arrows in the diagram below).

$$\begin{array}{ccccccc} 0 & \longrightarrow & Z_p(P, d^h)_{\bullet} & \longrightarrow & P_{p, \bullet} & \xrightarrow{d_p^h} & B_{p-1}(P, d^h) & \longrightarrow 0 \\ & & \textcolor{red}{H_{\bullet}} \downarrow & & & & \downarrow \textcolor{red}{G_{\bullet}} & \\ 0 & \longrightarrow & Z_p(Q, d^h) & \longrightarrow & Q_{p, \bullet} & \xrightarrow{d_p^h} & B_{p-1}(Q, d^h) & \longrightarrow 0 \end{array}$$

We build a lift F_p of f_p out of H_{\bullet} and G_{\bullet} . Recall that since $Z_p(P, d^h)_{\bullet}$ and $B_p(P, d^h)_{\bullet}$ are projective resolutions, the rows of the commutative diagram above are split exact so that

$$P_{p, \bullet} = Z_p(P, d^h) \oplus B_{p-1}(P, d^h) \text{ and } Q_{p, \bullet} = Z_p(Q, d^h) \oplus B_{p-1}(Q, d^h).$$

Since we work in the q direction, we will alleviate notations by writing

$$Z^P := Z_p(P, d^h) \text{ and } Z^Q := Z_p(Q, d^h)$$

$$B^P := B_{p-1}(P, d^h) \text{ and } B^Q := B_{p-1}(Q, d^h)$$

Claim 0.1. *We can construct a map $\gamma_q : B_q^P \rightarrow Z_q^Q$ so that the following maps assemble to a chain map $F_{\bullet} := \{F_q\}_q$*

$$F_q := \begin{pmatrix} H_q & \gamma_q \\ 0 & G_q \end{pmatrix} : Z_q^P \oplus B_q^P \rightarrow Z_q^Q \oplus B_q^Q.$$

In other words, for any $(z, b) \in Z_q^P \oplus B_q^P$,

$$F_q(z, b) = (H_q(z) + \gamma_q(b), G_q(b)).$$

Sketch of proof. The proof is similar to the inductive construction of γ_n in Theorem 2.4.6. Simply replace P'_n with Z_n^P , P''_n with B_n^Q and the maps F'_n with H_n , F''_n with G_n . \triangle

Using the claim, we get a collection of maps $F_p : P_{p,\bullet} \rightarrow Q_{p,\bullet}$. It remains to prove that we can assemble them to a double chain complex map. Recall that we have shown in Exercise 10.1.(a) that $\epsilon_p : P_{p,\bullet} \rightarrow A_p$ and $\eta_p : Q_{p,\bullet} \rightarrow B_p$ are projective resolutions, this yields the following commutative diagram,

$$\begin{array}{ccccccc}
 & & & \xrightarrow{=Z_{p-1}(P,d^h)\bullet} & & & \\
 \cdots \rightarrow Z_p(P,d^h)_\bullet & \rightarrow P_{p,\bullet} & \xrightarrow{d_p^h} & \overbrace{B_{p-1}(P,d^h)_\bullet} & \rightarrow P_{p-1,\bullet} & \rightarrow Z_{p-2}(P,d^h)_\bullet & \rightarrow \cdots \\
 & \downarrow H_\bullet & & \downarrow F_p & \downarrow G_\bullet & \downarrow F_{p-1} & \downarrow H_\bullet \\
 \cdots \rightarrow Z_p(Q,d^h) & \rightarrow Q_{p,\bullet} & \xrightarrow{d_p^h} & \overbrace{B_{p-1}(Q,d^h)_\bullet} & \rightarrow Q_{p-1,\bullet} & \rightarrow Z_{p-2}(Q,d^h)_\bullet & \rightarrow \cdots \\
 & & & \xrightarrow{=Z_{p-1}(P,d^h)\bullet} & & &
 \end{array}$$

This allows to conclude that $\tilde{f} := \{F_p\}_p : P_{\bullet,\bullet} \rightarrow Q_{\bullet,\bullet}$ is a double chain complex map that lifts $f : P \rightarrow Q$.

3. (a) Suppose that A is concentrated in degree 0. Then the CE-resolution of A is supported on the single column $p = 0$. In particular,

$$\mathbb{L}_i F(A) = H_i(\text{Tot}^\oplus(F(P_{\bullet,\bullet}))) = H_i(F(P_{0,\bullet})) = L_i F(A_0).$$

where the last equality follows from the fact that $P_{0,\bullet} \rightarrow A_0$ is a projective resolution.

(b) Let $A_\bullet \in \text{Ch}_{\geq 0}(\mathcal{A})$. On the one hand for all i , by definition

$$\mathbb{L}_i F(A_\bullet) = H_i(\text{Tot}^\oplus(F(P_{\bullet,\bullet})))$$

where $P_{\bullet,\bullet} \rightarrow A_\bullet$ is a CE-resolution of A_\bullet . On the other hand,

$$L_i H_0 F(A_\bullet) = H_i^h(H_0^v F(P_{\bullet,\bullet})) \stackrel{\clubsuit}{=} H_i^h(F H_0^v(P_{\bullet,\bullet})).$$

The equality \clubsuit follows from the fact that F is right exact and $P_{\bullet,\bullet} \rightarrow A_\bullet$ is a resolution. Indeed this implies that $H_0(F(P_{\bullet,\bullet})) \cong F(A_\bullet)$. On the other hand, $H_0(P_{\bullet,\bullet}) \cong A_\bullet$. We conclude by unicity of the cokernel.

Henceforth, we write $P := P_{\bullet,\bullet}$.

Claim 0.2. $\text{Tot}^\oplus(P)$ is chain homotopy equivalent to $H_0(P)$.

Proof. Consider the spectral sequence associated to P

$${}^I E_{p,q}^2 = H_p^h H_q^v(P) \implies H_{p+q}(\text{Tot}^\oplus(P)).$$

Since P is a CE-resolution, it has exact columns and in particular, $H_p^h H_q^v(P) = 0$ for all $q > 0$. Therefore page 2 of the above spectral sequence collapses on the single row $q = 0$ and we conclude that $\forall i \geq 0$

$$H_i^h H_0^v(P) = {}^I E_{i,0}^2 = {}^I E_{i,0}^\infty \cong H_i(\text{Tot}^\oplus(P)).$$

This shows that $\text{Tot}^\oplus(P)$ is quasi-isomorphic to $H_0(P)$. But since $\text{Tot}^\oplus(P)$ and $H_0(P)$ are chain complexes of pointwise projective objects, there are in fact chain homotopy equivalent (see for example Lemma 10.4.6).

△

It follows from the claim and the fact that F is an additive functor (as it is right exact) that $F(H_0(P))$ and $F(\text{Tot}^\oplus(P)) = \text{Tot}^\oplus(F(P))$ are chain homotopy equivalent. This latter conclusion yields the desired isomorphism

$$\begin{aligned} L_i H_0 F(A) &= H_i(F H_0(P)) \\ &\cong H_i(\text{Tot}^\oplus(F(P))) \\ &= \mathbb{L}^i F(A). \end{aligned}$$

(c) Let $A \in \text{Ch}(\mathcal{A})$ and let $P_{\bullet,\bullet}$ be a CE-resolution of A . Consider the shifted complex $A[n]$. Then the double complex obtained by shifting the columns of $P_{\bullet,\bullet}$, denoted $P[n, 0]_{\bullet,\bullet}$ is a CE-resolution of $A[n]$.

On the other hand, note that for all k

$$\begin{aligned} (\text{Tot}^\oplus(P[n, 0]))_k &= \bigoplus_{i+j=k} P[n, 0]_{i,j} \\ &= \bigoplus_{i+j=k} P_{i+n,j} \\ &= \bigoplus_{i'+j=k+n} P_{i',j} \\ &= ((\text{Tot}^\oplus P)[n])_k. \end{aligned}$$

We conclude by dimension shifting

$$\mathbb{L}_i F(A[n]) = H_i(\text{Tot}^\oplus F(P[n, 0])) = H_i((\text{Tot}^\oplus P)[n]) = H_{i+n}(\text{Tot}^\oplus P) = \mathbb{L}_{i+n} F(A).$$

4. Consider the short short exact sequence associated to the cone A

$$0 \longrightarrow A_0 \longrightarrow A \longrightarrow A_1[-1] \longrightarrow 0 .$$

Using Lemma 5.7.5, there is a long-exact sequence

$$\cdots \rightarrow \mathbb{L}_{i+1}F(A_1[-1]) \rightarrow \mathbb{L}_iF(A_0) \rightarrow \mathbb{L}_iF(A) \rightarrow \mathbb{L}_iF(A_1[-1]) \rightarrow \cdots$$

But, by Exercises 10.3.c then 10.3.a, for any integer k ,

$$\mathbb{L}_{k+1}F(A_1[-1]) = \mathbb{L}_kF(A_1) = L_kF(A_1).$$

Similarly

$$\mathbb{L}_kF(A_0) = L_kF(A_0).$$

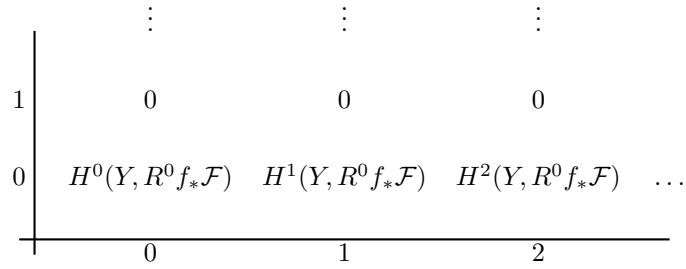
Substituting these in the above long exact sequence yields

$$\cdots \rightarrow \mathbb{L}_{i+1}F(A) \rightarrow L_iF(A_1) \rightarrow L_iF(A_0) \rightarrow \mathbb{L}_iF(A) \rightarrow \cdots$$

5. For the morphism of rings $f : X \rightarrow Y$ and the \mathcal{O}_X -module \mathcal{F} , consider the associated Leray spectral sequence

$$E_2^{pq} = H^p(Y, R^q f_* \mathcal{F}) \implies H^{p+q}(X, \mathcal{F}).$$

(a) The condition that $R^q f_* \mathcal{F} = 0$ for every $q > 0$ implies that page 2 of this spectral sequence is supported in the single row $q = 0$.



Using bounded convergence, we conclude that for every $p \geq 0$

$$H^p(X, \mathcal{F}) \cong E_\infty^{p,0} = E_2^{p,0} = H^p(Y, f_* \mathcal{F}).$$

Remark 0.3. In algebraic geometry, the condition that $R^q f_* \mathcal{F} = 0$ holds for example when f is affine.

(b)

Remark 0.4. We correct the assumptions in the statement of the exercise. We assume that $H^p(Y, R^q f_* \mathcal{F}) = 0$ for all $p > 0$. In algebraic geometry, this condition is satisfied for Y an affine scheme for example.

The condition that $H^p(Y, R^q f_* \mathcal{F}) = 0$ for every $p > 0$ implies that page 2 of the Leray spectral sequence is supported on the single column $p = 0$.

$$\begin{array}{c|ccc}
 & \vdots & \vdots & \vdots \\
 & H^0(Y, R^2 f_* \mathcal{F}) & \vdots & \vdots \\
 2 & H^0(Y, R^1 f_* \mathcal{F}) & 0 & 0 \\
 1 & H^0(Y, R^0 f_* \mathcal{F}) & 0 & 0 & \dots \\
 0 & & & & \\
 \hline
 & 0 & 1 & 2
 \end{array}$$

Since at each pages, the differentials going in and out of the complexes in the single column have either 0 source or target, we conclude that for every $q \geq 0$, by bounded convergence

$$H^q(X, \mathcal{F}) \cong E_\infty^{0,q} = E_2^{0,q} = H^0(Y, R^q f_* \mathcal{F}).$$