
Homological algebra solutions Week 10

Throughout, we will abreviate Cartan-Eilenberg resolution as CE-resolution.

1. (a) Consider the commutative diagram with exact column

0

· · · Bp(P, d
h)1 Bp(P, d

h)0 Im(dAn+1) = Bp(A)

ker(dAp ) = Zp(A)

· · · Hp(P, d
h)1 Hp(P, d

h)0 Zp(A)/Bp(A) = Hp(A)

0

where the rows are projective resolutions of Bp(A) and Hp(A). By
the Horseshoe Lemma (Exercise 5.4), we can assemble a projective
resolution of Zp(A)

Bp(P, d
h)• ⊕Hp(P, d

h)• → Zp(A)

where the right hand column lifts to an exact sequence of chain com-
plexes

0 Bp(P, d
h)• Bp(P, d

h)• ⊕Hp(P, d
h)• Hp(P, d

h)• 0 .

On the other hand, for every n, the SES in A

0 Bp(P, d
h)n Zp(P, d

h)n Hp(P, d
h)n 0

is split, because Hp(P, d
h)n is projective. Therefore, Zp(P, d

h)n ∼=
Bp(P, d

h)n ⊕Hp(P, d
h)n. We conclude that

Zp(P, d
h)• → Zp(A)
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is a projective resolution.

Similarly, since Zp(P, d
h)• → Zp(A) is a projective resolution for

every p, we apply the horseshoe lemma to the commutative diagram
with exact columns

0

· · · Zp(P, d
h)1 Zp(P, d

h)0 ker(dAp ) = Zp(A)

Ap

· · · Bp−1(P, d
h)1 Bp−1(P, d

h)0 Im(dp) = Bp−1(A)

0

i

dA
p

A similar reasoning allows us to conclude.

(b) Provided thatA is a small abelian category, we may assume by Freyd-
Mitchell’s embedding theorem that A is the category of R-modules
for some ring R. We apply a similar reasoning as in the proof of
theorem 2.7.2.

Consider A• = A•,0 viewed as double complex concentrated in degree
0. We start with the CE-resolution P•,• → A• and consider the
augmented double complex C ′ by adding the shifted double complex
A[−1]• in the row q = −1.

...
...

...
...

P0,0 · · · Pp−1,0 Pp,0 Pp+1,0 · · ·

A0 . . . Ap−1 Ap Ap+1 . . .

dh

ϵ0 ϵp+1

dr

ϵp ϵp−1

We notice that ϵ : Tot⊕(P•,•) → A has mapping cone

Cone(ϵ) = Tot(C ′).

Using corollary 1.5.4, ϵ is a quasi-isomorphism if and only if Cone(ϵ)
is exact. But by the Acyclic assembly lemma (Lemma 2.7.3), since
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C ′ is a right half plane complex with exact columns (since there are
projective resolutions by part (a)) we conclude.

2. We construct the induced map f̃ : P•,• → Q•,• as follows. We begin by

constructing chain maps f̃ : Pp,• → Qp,• between the p-th columns of P•,•
and Q•,• then verify that they assemble to a double chain complex map

f̃ . Consider the following commutative diagram

0 Zp(A) Ap Bp−1(A) 0

0 Zp(B) Bp Bp−1(B) 0

i

h

dp

fp g

i′ dp

where g = fp
∣∣
Zp(A)

and h = fp−1

∣∣
Bp−1(A)

. By the Comparison theorem

(Theorem 2.2.6), the maps h and g can be lifted to chain complex maps
(red arrows in the diagram below).

0 Zp(P, d
h)• Pp,• Bp−1(P, d

h) 0

0 Zp(Q, dh) Qp,• Bp−1(Q, dh) 0

H•

dh
p

G•

dh
p

We build a lift Fp of fp out of H• and G•. Recall that since Zp(P, d
h)•

and Bp(P, d
h)• are projective resolutions, the rows of the commutative

diagram above are split exact so that

Pp,• = Zp(P, d
h)⊕Bp−1(P, d

h) and Qp,• = Zp(Q, dh)⊕Bp−1(Q, dh).

Since se work in the q direction, we will alleviate notations by writing

ZP := Zp(P, d
h) and ZQ := Zp(Q, dh)

BP := Bp−1(P, d
h) and BQ := Bp−1(Q, dh)

Claim 0.1. We can construct a maps γq : BP
q → ZQ

q so that the following
maps assemble to a chain map F• := {Fq}q

Fq :=

(
Hq γq
0 Gq

)
: ZP

q ⊕BP
q → ZQ

q ⊕BQ
q .

In other words, for any (z, b) ∈ ZP
q ⊕BP

q ,

Fq(z, b) = (Hq(z) + γq(b), Gq(b)).
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Sketch of proof. The proof is similar to the inductive construction of γn
in Theorem 2.4.6. Simply replace P ′

n with ZP
n , P ′′

n with BQ
n and the maps

F ′
n with Hn, F

′′
n with Gn. △

Uisng the claim, we get a collection of maps Fp : Pp,• → Qp,•. It re-
mains to prove that we can assemble them to a double chain complex
map. Recall that we have shown in Exercise 10.1.(a) that ϵp : Pp,• → Ap

and ηp : Qp,• → Bp are projective resolutions, this yields the following
commutative diagram,

· · · Zp(P, d
h)• Pp,•

=Zp−1(P,dh)•︷ ︸︸ ︷
Bp−1(P, d

h)• Pp−1,• Zp−2(P, d
h)• · · ·

· · · Zp(Q, dh) Qp,• Bp−1(Q, dh)•︸ ︷︷ ︸
=Zp−1(P,dh)•

Qp−1,• Zp−2(Q, dh)• · · ·

H•

dh
p

Fp G• Fp−1 H•

dh
p

This allows to conclude that f̃ := {Fp}p : P•,• → Q•,• is a double chain
complex map that lifts f : P → Q.

3. (a) Suppose that A is concentrated in degree 0. Then the CE-resolution
of A is supported on the single column p = 0. In particular,

LiF (A) = Hi(Tot
⊕(F (P•,•))) = Hi(F (P0,•)) = LiF (A0).

where the last equality follows from the fact that P0,• → A0 is a
projective resolution.

(b) Let A• ∈ Ch≥0(A). On the one hand for all i, by definition

LiF (A•) = Hi(Tot
⊕(F (P•,•))

where P•,• → A• is a CE-resolution of A•. On the other hand,

LiH0F (A•) = Hh
i (H

v
0F (P•,•))

♣
= Hh

i (FHv
0 (P•,•)).

The equality ♣ follows from the fact that F is right exact and P•,• →
A• is a resolution. Indeed this implies that H0(F (P•,•)) ∼= F (A•).
On the other hand, H0(P•,•) ∼= A•. We conclude by unicity of the
cokernel.

Henceforth, we write P := P•,•.

Claim 0.2. Tot⊕(P ) is chain homotopy equivalent to H0(P ).
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Proof. Consider the spectral sequence associated to P

I
E2

p,q = Hh
pH

v
q (P ) =⇒ Hp+q(Tot

⊕(P ).

Since P is a CE-resolution, it has exact columns and in particular,
Hh

pH
v
q (P ) = 0 for all q > 0. Therefore page 2 of the above spectral

sequence collapses on the single row q = 0 and we conclude that
∀i ≥ 0

Hh
i H

v
0 (P ) =

I
E2

i,0 = IE∞
i,0

∼= Hi(Tot
⊕(P )).

This shows that Tot⊕(P ) is quasi-isomorphic to H0(P ). But since
Tot⊕(P ) and H0(P ) are chain complexes of pointwise projective ob-
jects, there are in fact chain homotopy equivalent (see for example
Lemma 10.4.6).

△

It follows from the claim and the fact that F is an additive functor (as
it is right exact) that F (H0(P )) and F (Tot⊕(P )) = Tot⊕(F (P )) are
chain homotopy equivalent. This latter conclusion yields the desired
isomorphism

LiH0F (A) = Hi(FH0(P ))

∼= Hi(Tot
⊕(F (P ))

= LiF (A).

(c) Let A ∈ Ch(A) and let P•,• be a CE-resolution of A. Consider the
shifted complex A[n]. Then the double complex obtained by shifting
the columns of P•,•, denoted P [n, 0]•,• is a CE-resolution of A[n].

On the other hand, note that for all k(
Tot⊕(P [n, 0])

)
k
=

⊕
i+j=k

P [n, 0]i,j

=
⊕

i+j=k

Pi+n,j

=
⊕

i′+j=k+n

Pi′,j

=
(
(Tot⊕ P )[n]

)
k
.

We conclude by dimension shifting

LiF (A[n]) = Hi

(
Tot⊕ F (P [n, 0])

)
= Hi

(
(Tot⊕ P )[n]

)
= Hi+n

(
Tot⊕ P

)
= Li+nF (A).
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4. Consider the short short exact sequence associated to the cone A

0 A0 A A1[−1] 0 .

Using Lemma 5.7.5, there is a long-exact sequence

· · · Li+1F (A1[−1]) LiF (A0) LiF (A) LiF (A1[−1]) · · ·

But, by Exercises 10.3.c then 10.3.a, for any integer k,

Lk+1F (A1[−1]) = LkF (A1) = LkF (A1).

Similarly
LkF (A0) = LkF (A0).

Substituting these in the above long exact sequence yields

· · · Li+1F (A) LiF (A1) LiF (A0) LiF (A) · · ·

5. For the morphism of rings f : X → Y and the OX -module F , consider
the associated Leray spectral sequence

Epq
2 = Hp(Y,Rqf∗F) =⇒ Hp+q(X,F).

(a) The condition that Rqf∗F = 0 for every q > 0 implies that page 2 of
this spectral sequence is supported in the single row q = 0.

...
...

...

1 0 0 0

0 H0(Y,R0f∗F) H1(Y,R0f∗F) H2(Y,R0f∗F) . . .

0 1 2

Using bounded convergence, we conclude that for every p ≥ 0

Hp(X,F) ∼= Ep,0
∞ = Ep,0

2 = Hp(Y, f∗F).

Remark 0.3. In algebraic geometry, the condition that Rqf∗F = 0
holds for example when f is affine.
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(b)

Remark 0.4. We correct the assumptions in the statement of the
exercise. We assume that Hp(Y,Rqf∗F) = 0 for all p > 0. In
algebraic geometry, these condition is satisfied for Y an affine scheme
for example.

The condition that Hp(Y,Rqf∗F) = 0 for every p > 0 implies that
page 2 of the Leray spectral sequence is supported on the single
column p = 0.

...
...

...

2 H0(Y,R2f∗F)
...

...

1 H0(Y,R1f∗F) 0 0

0 H0(Y,R0f∗F) 0 0 . . .

0 1 2

Since at each pages, the differentials going in and out of the complexes
in the single column have either 0 source or target, we conclude that
for every q ≥ 0, by bounded convergence

Hq(X,F) ∼= E0,q
∞ = E0,q

2 = H0(Y,Rqf∗F).
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