Homological algebra solutions Week 10

Throughout, we will abreviate Cartan-FEilenberg resolution as CE-resolution.

1. (a) Consider the commutative diagram with exact column
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where the rows are projective resolutions of B,(A) and H,(A). By
the Horseshoe Lemma (Exercise 5.4), we can assemble a projective
resolution of Z,(A)

B,(P,d")e ® H,(P,d")s — Z,(A)

where the right hand column lifts to an exact sequence of chain com-
plexes

0 —— By(P,d")e —— B,(P,d")e ® Hy(P,d")e —— H,(P,d")e — 0 .

On the other hand, for every n, the SES in A

0 — B,(P,d"),, —— Z,(P,d"),, —— Hy(P,d"), —— 0

is split, because H,(P,d"), is projective. Therefore, Z,(P,d"), =
B,(P,d"), ® H,(P,d"),.. We conclude that

Zp(P,d")e — Z,(A)



is a projective resolution.

Similarly, since Z,(P,d")s — Z,(A) is a projective resolution for
every p, we apply the horseshoe lemma to the commutative diagram
with exact columns

. — By_1(P,d")y —— B,_y(P,d")o — Im(d,)

A similar reasoning allows us to conclude.

Provided that A is a small abelian category, we may assume by Freyd-
Mitchell’s embedding theorem that A is the category of R-modules
for some ring R. We apply a similar reasoning as in the proof of
theorem 2.7.2.

Consider A, = A, o viewed as double complex concentrated in degree
0. We start with the CE-resolution P, , — A, and consider the
augmented double complex C’ by adding the shifted double complex
Al—1]e in the row ¢ = —1.
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We notice that € : Tot¥ (P, o) — A has mapping cone
Cone(e) = Tot(C").

Using corollary 1.5.4, € is a quasi-isomorphism if and only if Cone(e)
is exact. But by the Acyclic assembly lemma (Lemma 2.7.3), since



('’ is a right half plane complex with exact columns (since there are
projective resolutions by part (a)) we conclude.

2. We construct the induced map f : Peo = Q.6 as follows. We begin by
constructing chain maps f : Pye — Q. between the p-th columns of P, .
and e e then verify that they assemble to a double chain complex map
f. Consider the following commutative diagram

0 —— Z,(A) — 4, b, B, 1(A) —— 0

hl fpl lg
0 —— Z,(B) — By —— Bp—1(B) —— 0

where g = fP‘ZP(A) and h = fpflpr_l(A)' By the Comparison theorem
(Theorem 2.2.6), the maps h and g can be lifted to chain complex maps

(red arrows in the diagram below).

dh
0 —— Z,(P,d"), Ppe — By_y(P,d") — 0
H.l l”‘
0 —— Z,(Q,d") Qpo —+ Byp-1(Q,d") —— 0
p

We build a lift F, of f, out of H, and G,. Recall that since Z,(P, d")e
and B (P, d")e are projective resolutions, the rows of the commutative
diagram above are split exact so that

Pyo=Zy(P,d") ® By_1(P,d") and Qpe = Z,(Q,d") ® Bp_1(Q, d").
Since se work in the ¢ direction, we will alleviate notations by writing
z¥ = Z,(P,d") and Z° := Z,(Q,d")
BY .= B, 1(P,d") and B? := B, _1(Q,d")

Claim 0.1. We can construct a maps v, : Bf — Z;‘Q so that the following
maps assemble to a chain map Fe := {F,},

. Hy vq\ . ,p P
Fq.:<0q G‘;).quan%Zf@B(?.

In other words, for any (z,b) € Zf & Bf,

Fy(z,b) = (Hy(2) + 74(b), G4 (D).



Sketch of proof. The proof is similar to the inductive construction of -,
in Theorem 2.4.6. Simply replace P! with ZI'| P” with BY and the maps
F! with H,,, F with G,,. A

Uisng the claim, we get a collection of maps Fj, : P,e — Qpe. It re-
mains to prove that we can assemble them to a double chain complex
map. Recall that we have shown in Exercise 10.1.(a) that €, : P, o — A,
and 1, : Qpe — B, are projective resolutions, this yields the following
commutative diagram,

=Zp_1(P,d")e
h p—N—

d’
- Zp(Pyd")e - Pye 5 By 1(P,d")e = Py_1.6 = Zpo(P,d")e > ---

R N

- Zp(Qadh) - Qp,o di Bp—l(Qadh)- - Qp—l,o - Zp—2(Qadh)o - e
' =Zp-1(P,d")s

This allows to conclude that f = {F,}p : Poe = Qe is a double chain
complex map that lifts f: P — Q.

()

Suppose that A is concentrated in degree 0. Then the CE-resolution
of A is supported on the single column p = 0. In particular,

L:F(A) = Hy(Tot®(F(Pu.))) = Hi(F(Po.0)) = LiF(Ao).

where the last equality follows from the fact that Pye. — Ag is a
projective resolution.

Let Ao € Chso(A). On the one hand for all 4, by definition
L;F(As) = H;(Tot®(F(Ps.s))
where P, o — A4 is a CE-resolution of A,. On the other hand,
LiHoF(Ay) = HI(HEF (o)) £ HI(FHS(P.o).
The equality & follows from the fact that £ is right exact and P, o —
A, is a resolution. Indeed this implies that Ho(F(PsW)) = F(A).

On the other hand, Hy(P, o) = A,. We conclude by unicity of the
cokernel.

Henceforth, we write P := P, ,.

Claim 0.2. Tot®(P) is chain homotopy equivalent to Hy(P).



Proof. Consider the spectral sequence associated to P
I v
E},=H}H!(P) = Hpyq(Tot®(P).

Since P is a CE-resolution, it has exact columns and in particular,
H}H?(P) = 0 for all ¢ > 0. Therefore page 2 of the above spectral
sequence collapses on the single row ¢ = 0 and we conclude that
Vi >0
v I o0 Ay
H!HY(P) = "E?, ="E = Hy(Tot®(P)).

This shows that Tot®(P) is quasi-isomorphic to Hy(P). But since
Tot®(P) and Hy(P) are chain complexes of pointwise projective ob-
jects, there are in fact chain homotopy equivalent (see for example
Lemma 10.4.6).

A

It follows from the claim and the fact that F'is an additive functor (as
it is right exact) that F(Hy(P)) and F(Tot®(P)) = Tot®(F(P)) are
chain homotopy equivalent. This latter conclusion yields the desired
isomorphism

LiHoF(A) = H;(FHo(P))
>~ H;(Tot® (F(P))
=L'F(A).
Let A € Ch(A) and let P, o be a CE-resolution of A. Consider the

shifted complex A[n]. Then the double complex obtained by shifting
the columns of P, o, denoted P[n,0]q s is a CE-resolution of A[n].

On the other hand, note that for all k
(Tot®(P[n,0])), = € Pln, 0l

i+j=k

= @D Py
i+j=k

= D P
i +j=k+n

= ((Tot69 P)[n])]C .

We conclude by dimension shifting

L;F(A[n]) = H; (Tot® F(P[n,0])) = H; ((Tot® P)[n]) = Hity (Tot? P) = Ly, F(A).



4. Consider the short short exact sequence associated to the cone A

Using Lemma 5.7.5, there is a long-exact sequence

But, by Exercises 10.3.c then 10.3.a, for any integer k,
Lgr1F(A1[—-1])) = Ly F(Ay) = L F(Ay).

Similarly
LiF(Ag) = L F(Ap).

Substituting these in the above long exact sequence yields

5. For the morphism of rings f : X — Y and the Ox-module F, consider
the associated Leray spectral sequence

EY = HP(Y, Rf. F) — HPY(X,F).

(a) The condition that R?f,F = 0 for every ¢ > 0 implies that page 2 of
this spectral sequence is supported in the single row ¢ = 0.

0| HO(Y,R°f.F) HYY,RfF) H2(Y,R°f.F)

Using bounded convergence, we conclude that for every p > 0
HP(X,F) = E% = EY° = HP(Y, [.F).

Remark 0.3. In algebraic geometry, the condition that R?f,F =0
holds for example when f is affine.



Remark 0.4. We correct the assumptions in the statement of the
exercise. We assume that HP(Y,R7f,F) = 0 for all p > 0. In
algebraic geometry, these condition is satisfied for Y an affine scheme
for example.

The condition that H?(Y, R1f.F) = 0 for every p > 0 implies that
page 2 of the Leray spectral sequence is supported on the single
column p = 0.

2| HOY,R2f.F)
1| HYNY,R'f.F) 0 0

0| HYY,R'£LF) 0 0

Since at each pages, the differentials going in and out of the complexes
in the single column have either 0 source or target, we conclude that
for every ¢ > 0, by bounded convergence

HY(X,F) = E% = E)* = H(Y, R1f.F).



